Cet ouvrage concerne une autre langue que le français mais la méthodologie employée pourrait inspirer le travail sur la datation des textes.
https://brill.com/view/title/55816?contents=editorial-content
Lire un compte rendu ici : https://linguistlist.org/issues/31/31-1581.html
In Language and Chronology, Toner and Han apply innovative Machine Learning techniques to the problem of the dating of literary texts. Many ancient and medieval literatures lack reliable chronologies which could aid scholars in locating texts in their historical context. The new machine-learning method presented here uses chronological information gleaned from annalistic records to date a wide range of texts. The method is also applied to multi-layered texts to aid the identification of different chronological strata within single copies.
While the algorithm is here applied to medieval Irish material of the period c.700-c.1700, it can be extended to written texts in any language or alphabet. The authors’ approach presents a step change in Digital Humanities, moving us beyond simple querying of electronic texts towards the production of a sophisticated tool for literary and historical studies. Show Less
While the algorithm is here applied to medieval Irish material of the period c.700-c.1700, it can be extended to written texts in any language or alphabet. The authors’ approach presents a step change in Digital Humanities, moving us beyond simple querying of electronic texts towards the production of a sophisticated tool for literary and historical studies. Show Less